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New tables of irreducible representations (IRs) are introduced for the 230

crystallographic space groups (SGs) in three-dimensional space, at both special

and non-special k vectors, and for their extensions to (3 + d)-dimensional

superspace (‘superspace-extended SGs’ or SSESGs). Neither a tabulation of SG

IR matrices for non-special k vectors nor a tabulation of SSESG IR matrices for

d > 1 have been previously published. These tabulations are made possible by a

new form in which the IR matrices of SGs are separated as a product of a

translation part T and a point-operation part P, and where the IR matrices of

SSESGs are separated as a product of a phase-shift part Q and a point-operation

part Ps. Both T and Q have a simple prescribed form that does not need to be

tabulated. Also, the new IR matrices are in a convenient block form which

allows one to see by inspection which parts of the matrices and the associated

order parameters belong to which arm of the star of k. In addition to complex

IR matrices, real physically irreducible representation (PIR) matrices are

tabulated. The new IR and PIR tables are available on the ISO-IR website

(http://stokes.byu.edu/iso/irtables.php) in both convenient human-readable and

computer-readable forms.

1. Introduction

The methods of group-representation theory have been

applied with much success to many different areas of crys-

tallography. One application of special interest is the

exploration and interpretation of distortions in crystals,

including those that appear in real structural phase transitions.

By distortion, we include any change in the crystal that breaks

its symmetry, such as lattice strains, atomic displacements,

atomic ordering, magnetic ordering etc. The centerpiece of

these group-theoretical methods is the irreducible repre-

sentation (IR) which maps the operators of a symmetry group

onto a set of matrices.

Tables of IR matrices have been published mainly for the

little group of k (Kovalev, 1965, 1993; Miller & Love, 1967;

Zak, 1969; Bradley & Cracknell, 1972; Cracknell et al., 1979;

etc.). The IR matrices for the complete space group can be

induced from those for the little group of k, but the process is

tedious if done by hand. Tabulations of the IR matrices for the

complete space group have only been available at Kovalev

(1993) and Stokes & Hatch (1988), and these are restricted to

special k vectors.

In addition to the tables of Stokes & Hatch (1988), for IRs

of three-dimensional space groups (SGs) at special k points,

matrices for complete IRs at non-special k points have been

available for many years, individually on demand, via real-

time calculations performed within the interactive

ISOTROPY program. The ISOTROPY website (http://

stokes.byu.edu/iso/) has now grown to include an extensive

suite of related programs, utilities and data tables. In 2007,

matrices for IRs of SGs extended to (3 + 1)-dimensional

superspace (‘superspace-extended SGs’ or SSESGs) were

made available via the ISO(3+1)D tables on the ISOTROPY

website (Stokes et al., 2007), which are important when dealing

with incommensurate distortions. We refer to these sources

collectively as the ‘1988 version’ of the IR matrices.

Until now, no practical way of tabulating complete-SG IR

matrices for non-special k vectors has been established. This

problem is due in part to the fact that the IR matrices depend

in a non-trivial way on the free components of the non-special

k vectors, which can take on an infinite number of values. The

problem is further compounded by the fact that the IR

matrices are only unique to within a similarity transformation,

which may also depend on k.

Here, we report a new separated form for the IR matrices

for complete SGs that allows their tabulation at both special

and non-special k vectors. In addition, we put the matrices into

a block form that makes the interpretation of order para-

meters easier. IR matrices for SSESGs have also been

included. We call the result the ‘2011 version’ of the IR

matrices, which are now available via the ISO-IR tables on the

ISOTROPY website (http://stokes.byu.edu/iso/irtables.php),

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5025&bbid=BB18
http://crossmark.crossref.org/dialog/?doi=10.1107/S0108767313007538&domain=pdf&date_stamp=2013-05-08


both in convenient human-readable form and also in

computer-readable form. The 2011 IRs are accessible on a

case-by-case basis through the ISOTROPY suite. But because

they are tabulated in ISO-IR, they can also be used by other

software packages now.

The matrices tabulated in the ISO(3+1)D tables for (3 + 1)-

dimensional SSESGs actually have a separated form as well.

However, these were not the full IR matrices but only the

upper left block which takes the k vector in�k. The separated

form in ISO(3+1)D was an intermediate step to the final

separated form of the full IR matrices presented here.

Note that the IRs used by tools within the ISOTROPY

software suite have always been based on the tables of Miller

& Love (1967) and the extension of Cracknell et al. (1979)

(hereafter denoted as CDML). We use their notation and we

build the SG IR matrices using IRs of the little groups of k

from their tables. From the very start, however, we have

generated our own similarity transformations to bring the IR

matrices into a form that we desire.

2. Induced IRs in block form

We begin with the usual method for inducing IRs of SG G

from the IRs of Gk, its little group of k (see, for example,

Bradley & Cracknell, 1972). The little group of k consists of

all operators g ¼ fRjvg 2 G for which kR�1 ¼ k (modulo a

reciprocal-lattice vector K). We express operators g in Seitz

notation fRjvg to denote a point operation R followed by a

translation v.

Note that we consider R to represent a matrix such that the

operation of R on a vector v results in a vector Rv. This

requires that the operation of R on a k vector results in kR�1

so that the dot product ðkR�1Þ � ðRvÞ ¼ k � v remains invariant.

We obtain the IR matrices for Gk from CDML and express

them in a form that separates the dependencies on R and v:

Dk
ðfRjvgÞ ¼ expði2�k � vÞPk

ðRÞ: ð1Þ

The matrices PkðRÞ are called ‘loaded IRs’ by Kovalev (1993)

and ‘weighted IRs’ by Lyubarskii (1960). Let nk be the

dimension of DkðgÞ.

It is useful at this point to also define what we call Gkk, the

‘little group of �k’, which consists of all operators

g ¼ fRjvg 2 G for which kR�1 ¼ �k (mod K). If no operator

in G takes k into �k or if k ¼ �k (mod K), then Gkk ¼ Gk.

We first decompose Gkk into cosets with respect to Gk:

Gkk ¼
Pe

i0¼1

hk
i0G

k; ð2Þ

where e is the number of cosets, hk
i0 ¼ fR

k
i0 jv

k
i0 g are coset

representatives (coset reps) and the first coset rep hk
1 is chosen

to be the identity operator. If Gkk ¼ Gk, then e ¼ 1, and there

is only one term in this decomposition; otherwise e ¼ 2, and

there are two terms with kðRk
2Þ
�1
¼ �k (mod K).

Next, we decompose G into cosets with respect to Gkk:

G ¼
Pd
i¼1

hkk
i Gkk; ð3Þ

where d is the number of cosets, hkk
i ¼ fR

kk
i jv

kk
i g are coset reps

and the first coset rep hkk
1 is chosen to be the identity operator.

These coset reps generate a set of k vectors, fk1 ¼ k,

k2 ¼ kðRkk
2 Þ
�1; . . . ; kd ¼ kðRkk

d Þ
�1
g, which we call the ‘star of

�k’. This formalism will make it easier to generalize to the

case of superspace extensions in the next section.

We combine equations (2) and (3) to obtain the usual

decomposition of G into cosets with respect to Gk:

G ¼
Pd
i¼1

Pe

i0¼1

hii0G
k; ð4Þ

where hii0 ¼ hkk
i hk

i0 ¼ fRii0 jvii0 g. These coset reps hii0 generate

the usual star of k:

k1; k2; . . . ; kd ð5Þ

if e ¼ 1, and

k1;�k1; k2;�k2; . . . kd;�kd ð6Þ

if e ¼ 2.

Finally, we induce the IRs of G from the IRs of Gk using

Diji0 j0 ðgÞ ¼

(
Dkðh�1

ii0 ghjj0 Þ; if h�1
ii0 ghjj0 2 Gk;

0; otherwise:
ð7Þ

The IR matrices DðgÞ are in block form, with de rows and

columns of nk-dimensional matrix blocks Diji0 j0 ðgÞ. Each row

and each column contains one nonzero block.

For a pure lattice translation, the IR matrix is diagonal

(i ¼ j and i0 ¼ j0). Using h�1
ii0 f1jvghii0 ¼ f1jR

�1
ii0 vg, we obtain

Diii0 i0 ðf1jR
�1
ii0 vgÞ ¼ Dkðf1jR�1

ii0 vgÞ. Since k � ðR�1
ii0 vÞ ¼ ðkR�1

ii0 Þ � vÞ

¼ �ki � v (the plus sign for i0 ¼ 1 and the minus sign for

i0 ¼ 2), we finally obtain

Diii0 i0 ðf1jvgÞ ¼

(
1nk

expð2�iki � vÞ; if i0 ¼ 1;
1nk

expð�2�iki � vÞ; if i0 ¼ 2;
ð8Þ

where 1nk
is an nk-dimensional unit matrix.

3. IRs of SSESGs in block form

The essential properties of superspace groups (SSGs) are

reviewed in Appendix A. For non-special k vectors, the

vectors in the star of �k can be treated as modulation vectors.

The phase shifts �i of these modulations become internal

coordinates in the (3þ d)-dimensional superspace extension

of G that we call Gs. We express these phase shifts as

components of a vector D ¼ f�1;�2; . . . ;�dg and we write

the operators in Gs as fR; "jv;Dg (using the unmixed setting).

Just as for three-dimensional SGs, we can induce IRs of an

SSESG Gs from the IRs of Gk
s , the little group of k in super-

space. The operators fR; "jv; 0g in Gk
s are isomorphic to the

corresponding operators fRjvg in Gk. Thus, we can map them

onto the same IR matrices:

Dk
s ðfR; "jv; 0gÞ ¼ Dk

ðfRjvgÞ ¼ expði2�k � vÞPk
ðRÞ: ð9Þ

Pure phase shifts are mapped onto simple exponentials

(Perez-Mato et al., 1984a,b):
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Dk
s ðfð1; 1Þj0;DgÞ ¼ 1nk

expð2�i�1Þ: ð10Þ

Note that we include only �1 in the IR since the little group of

k only involves the first arm of the star of �k. Combining

equations (9) and (10), we obtain

Dk
s ðfR; "jv;DgÞ ¼ Dk

s ðfð1; 1Þj0;DgÞDk
s ðfR; "jv; 0gÞ

¼ expð2�i�1Þ expði2�k � vÞPkðRÞ

¼ expð2�i½�1 þ k � v�ÞPk
ðRÞ: ð11Þ

This is the result for the unmixed setting. In the SSG lattice

setting, we obtain

Dk
s ðfRsjv; dgÞ ¼ expð2�i�1ÞP

kðRÞ; ð12Þ

where �1 ¼ �1 þ k � v. We note that Dk
s ðfRsjv; dgÞ does not

depend on v. The IR maps SSG lattice vectors onto the unit

matrix.

Once we have the IR matrices of Gk
s , we can induce the

IR matrices of Gs. We decompose Gkk
s into cosets of Gk

s as

in equation (2) and we decompose Gs into cosets of Gkk
s as in

equation (3). Finally, we induce the IR as in equation (7):

Dsiji0 j0 ðgsÞ ¼

(
Dk

s ðh
�1
sii0 gshsjj0 Þ; if h�1

sii0 gshsjj0 2 Gk
s ;

0; otherwise:
ð13Þ

As for SGs, this complete SSESG IR is also in block form,

having de rows and columns of nk-dimensional blocks.

4. A separated matrix form

For superspace extensions, we can separate out the contribu-

tion from the phase shifts:

h�1
sii0 fRsjv; dghsjj0 ¼ f1j0; ð"

k
si0 Þ
�1
ð"kk

si Þ
�1dgh�1

sii0 fRsjv; 0ghsjj0 : ð14Þ

Using ð"kk
si Þ
�1
ð�1; . . .Þ ¼ ð�i; . . .Þ and ð"k

si0 Þ
�1
ð�i; . . .Þ ¼ ð��i; . . .Þ

(the plus sign for i0 ¼ 1 and the minus sign for i0 ¼ 2), we

obtain

Dk
s ðh
�1
sii0 fRsjv; dghsjj0 Þ ¼(
expð2�i�iÞD

k
s ðh
�1
sii0 fRsjv; 0ghsjj0 Þ; if i0 ¼ 1;

expð�2�i�iÞD
k
s ðh
�1
sii0 fRsjv; 0ghsjj0 Þ; if i0 ¼ 2:

ð15Þ

Putting this into equation (13), we obtain a complete separa-

tion of the IR matrix into a phase-shift part and a point-

operation part:

DsðfRsjv; dgÞ ¼ QðdÞPsðRsÞ; ð16Þ

where

Psiji0j0 ðRsÞ ¼(
Dk

s ðh
�1
sii0 fRsjv; 0ghsjj0 Þ; if h�1

sii0 fRsjv; 0ghsjj0 2 Gk
s ;

0; otherwise;

ð17Þ

and

Qiii0 i0 ðdÞ ¼

(
1nk

expð2�i�iÞ; if i0 ¼ 1;
1nk

expð�2�i�iÞ; if i0 ¼ 2;
ð18Þ

which is diagonal. Note that the IR matrices DsðfRsjv; dgÞ do

not depend on the free parameters in the k vector. For

SSESGs, it is the phase shifts �i that have arbitrary values, and

they are separated out into a function QðdÞ which is known

analytically. This fact makes the tabulation of the IR matrices

possible. We only need to tabulate the point-operation part

PsðRsÞ, one matrix for each point operator Rs in the translation

factor group.

We can now obtain SG IR matrices with similar separation

properties. In the unmixed setting, equation (16) becomes

Dsiji0j0 ðfR; "jv;DgÞ ¼ Qiii0i0 ð�i þ ki � vÞPsiji0j0 ðRÞ: ð19Þ

Since the operators fR; "jv; 0g in Gs are isomorphic to the

corresponding operators fRjvg in G, we can map them onto

the same IR matrices:

Diji0j0 ðfRjvgÞ ¼ Dsiji0j0 ðfR; "jv; 0gÞ ¼ Qiii0i0 ðki � vÞPsiji0 j0 ðRÞ: ð20Þ

We now define a translational part of the IR matrix,

Tiii0 i0 ðvÞ ¼ Qiii0 i0 ðki � vÞ ¼

(
1nk

expð2�iki � vÞ; if i0 ¼ 1;
1nk

expð�2�iki � vÞ; if i0 ¼ 2;

ð21Þ

which is diagonal and identical to the expression in equation

(8) for a pure lattice translation. Recalling that PðRÞ ¼ PsðRsÞ,

we finally obtain

DðfRjvgÞ ¼ TðvÞPðRÞ: ð22Þ

The complicated detour through superspace was necessary to

obtain the IRs in the separated form, which does not arise

naturally from equation (7). This separation property of DðgÞ

now enables us to tabulate complete IRs for non-special k

vectors, which contain one or more free parameters that can

take on arbitrary values. These free parameters are contained

only in the translation part TðvÞ, which is known analytically

and has the same form for every IR. We only need to tabulate

the point-operation part PðRÞ, one matrix for each point

operator R in the translational factor group.

The idea of separating the translational and point-operation

parts of an IR matrix is evident in Kovalev’s work on ‘loaded’

IRs of the little group of k. Kovalev also uses an apparently

separated form for his IRs of complete SGs only at special k

vectors where the separated form has little or no value. Here,

we obtain a highly useful separated form for the case of non-

special k vectors, and simply use equation (7) instead for

special k vectors.

5. IRs in real form

The complex-conjugation type of an IR describes the rela-

tionship between the IR and its complex conjugate (Bradley &

Cracknell, 1972). Type 1: the IR is intrinsically real (i.e.

equivalent via a similarity transformation to a set of real

matrices); in real form, the IR and its complex conjugate are
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identical. Type 2: the IR is intrinsically complex (i.e. not

equivalent to a set of real matrices) but equivalent to its own

complex conjugate; this requires that the characters of the IR

be real. Type 3: the IR is intrinsically complex and also

inequivalent to its own complex conjugate; this requires that

some of the IR characters be complex.

When an IR is of type 2 or 3, we form a ‘physically’ irre-

ducible representation (PIR) by forming the direct sum of the

true IR with its complex conjugate,"
DIRðgÞ 0

0 DIRðgÞ
�

#
; ð23Þ

which can be brought to real form by a similarity transfor-

mation. The PIR is convenient for projecting out real basis

functions. In Appendix B, we describe a straightforward

method for constructing the PIR matrices in real form.

We must also bring type-1 IRs to real form. In general, the

form generated by equations (7) or (13) is not real. The

strategies that we use to bring them to real form are also

discussed in Appendix B.

In their real form, all of our IR and PIR matrices (types 1, 2,

3) have the following properties:

(i) Separated form for non-special k vectors: DfRjvg ¼

TðvÞPðRÞ for SGs and DsfRsjv; dg ¼ QðdÞPsðRsÞ for SSESGs.

The matrices TðvÞ and QðdÞ have a standard form [see (iii)

below], so that we only need to tabulate the PðRÞ or PsðRsÞ

matrices.

(ii) Block form: in complex form, our IR matrices have de

rows and columns of nk-dimensional blocks. Upon conversion

to real form, however, the blocks associated with k and �k

become mixed, so that we then obtain d rows and columns of

(enkt)-dimensional blocks, where t ¼ 1 for type-1 IRs and

t ¼ 2 for PIRs of type 2 and 3 IRs. Each row and column

contains one nonzero block. The ith row and the ith column

are associated with ki, the ith vector in the star of �k.

(iii) Standard real form for translation matrices in SGs

[Dðf1jvgÞ in equation (8) and TðvÞ in equation (21)] and phase-

shift matrices in SSESGs [QðdÞ in equation (18)]. The form is

block diagonal, with the ith matrix block of dimension b ¼

enkt given by

UbðxiÞ ¼

"
1b=2 cosð2�xiÞ 1b=2 sinð2�xiÞ

�1b=2 sinð2�xiÞ 1b=2 cosð2�xiÞ

#
; ð24Þ

where xi ¼ ki � v for translation matrices and xi ¼ �i for phase-

shift matrices.

Note that ISO-IR contains separate tables for IR matrices

in both the real form and the complex form. From the upper

left-hand matrix block of the complex form, users can easily

obtain IR matrices for Gk and Gk
s .

As an example, consider the �1 (DT1) IR of SG No. 90

P4212. The star of �k consists of two k vectors: k1 ¼ ð0; �; 0Þ

and k2 ¼ ð�; 0; 0Þ. Because d ¼ 2, e ¼ 2 and nk ¼ 1, the IR

matrices are four-dimensional, each constructed in real form

with two-dimensional matrix blocks. For g ¼ xþ 1
2 ; yþ 1

2 ; z

(180� screw rotation about b), we obtain

DðgÞ ¼ Tð12 ;
1
2 ; 0ÞPðx; y; zÞ

¼

cosð��Þ sinð��Þ 0 0

� sinð��Þ cosð��Þ 0 0

0 0 cosð��Þ sinð��Þ

0 0 � sinð��Þ cosð��Þ

2
6664

3
7775

	

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

0
BBB@

1
CCCA; ð25Þ

where we obtained the T matrix for v ¼ ð12 ;
1
2 ; 0Þ using

k1 � v ¼ k2 � v ¼
1
2�, and we obtained the P matrix from ISO-

IR. Note that Tð12 ;
1
2 ; 0Þ alone is not an IR matrix since

f1j 12 ;
1
2 ; 0g alone is not an operator in the SG. Similarly,

Pðx; y; zÞ alone is not an IR matrix.

Now suppose we want to consider incommensurate modu-

lations. We choose � to take an irrational value. Since there

are two k vectors in the star of �k (d ¼ 2), the symmetry

operators of the group act in ð3þ 2Þ-dimensional superspace.

The IR matrix for g ¼ x1 þ
1
2 ; x2 þ

1
2 ; x3; x4 þ �1; x5 þ �2 is

given by

DðgÞ ¼ Qð�1; �2ÞPsðx1; x2; x3; x4; x5Þ

¼

cosð2��1Þ sinð2��1Þ 0 0

� sinð2��1Þ cosð2��1Þ 0 0

0 0 cosð2��2Þ sinð2��2Þ

0 0 � sinð2��2Þ cosð2��2Þ

2
6664

3
7775

	

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

0
BBB@

1
CCCA; ð26Þ

where we again obtain the Ps matrix from ISO-IR.

6. Order parameters and the new block form

An order parameter g is a multi-dimensional vector which is

associated with an IR. SG operators act on an order parameter

via the IR matrix, i.e. gg ¼ DðgÞg. In most applications, the

order parameter describes how the SG symmetry of a struc-

ture is broken by a distortion. The symmetry of the distorted

structure consists of all operators g 2 G which keep g
invariant, i.e. DðgÞg ¼ g. The set of these operators is called

an isotropy subgroup of G.

To see how the form of the IR matrix affects the form of g,

consider the (enk)-dimensional block D11ðgÞ of the IR matrix.

Since hkk
1 is the identity operator, this block is nonzero only

if g 2 Gkk. Recall that these are the operators that take k into

�k. If an order parameter is zero except for the first enk

components, then only IR matrices with a nonzero D11ðgÞ

block can satisfy DðgÞg ¼ g, and the resulting symmetry group

contains only operators that take k into �k. Such a structure

will be characterized by a single modulation vector k.
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Next consider the ith block DiiðgÞ along the diagonal of

the IR matrix. This block is nonzero only if ðhkk
i Þ
�1ghkk

i 2 Gkk,

i.e., kR�1
i RRi ¼ �k. Since kR�1

i ¼ ki, this condition becomes

kiR
�1 ¼ �ki. These are the operators g that take ki into�ki. If

an order parameter is zero except for the ith set of enk

components [components ði� 1Þenk þ 1 through ienk], then

only IR matrices with a nonzero block DiiðgÞ can satisfy

DðgÞg ¼ g, and the resulting symmetry group contains only

operators that take ki into �ki. Such a structure will be

characterized by a modulation vector ki.

In summary, the first enk components of g describe distor-

tions belonging to k1, the next enk components describe

distortions belonging to k2 etc. As a result, we can determine

which k vectors are involved in a particular distortion simply

by inspecting its order parameter.

As an example, consider the X1 IR of SG No. 90 P4212. The

star of �k consists of two k vectors: k1 ¼ ð0;
1
2 ; 0Þ and k2 ¼

ð 1
2 ; 0; 0Þ. Because d ¼ 2, e ¼ 1 and nk ¼ 2, the IR matrices are

four-dimensional, each constructed in real form with two-

dimensional matrix blocks. The IR matrix for g ¼ fRjvg ¼

xþ 1
2 ; yþ 1

2 ; z (180� screw rotation about b) is given by (from

the ISO-IR tables)

DðgÞ ¼

0 1 0 0

�1 0 0 0

0 0 �1 0

0 0 0 1

0
BB@

1
CCA: ð27Þ

Note that the blocks,

0 1

�1 0

� �
and

�1 0

0 1

� �
;

lie on the diagonal of D, since k1R�1 ¼ k1 and k2R�1 ¼ �k2.

The IR matrix for g ¼ fRjvg ¼ yþ 1
2 ; xþ 1

2 ; z (270� rotation

about c) is given by

DðgÞ ¼

0 0 0 1

0 0 �1 0

�1 0 0 0

0 1 0 0

0
BB@

1
CCA: ð28Þ

In this case, the blocks,

�1 0

0 1

� �
and

0 1

�1 0

� �
;

are off-diagonal in D, since k1R�1 ¼ k2 and k2R�1 ¼ �k1.

If we use the ISODISTORT package (Campbell et al., 2006)

of the ISOTROPY software suite to find displacive distortions

in P4212 for the X1 IR, we find nine possible nonequivalent

distortions, each described by a four-dimensional order para-

meter g. The first and second components of g describe

distortions belonging to k1, and the third and fourth compo-

nents describe distortions belonging to k2. Thus, g ¼ ð0; 0; a; 0Þ

describes a distortion involving k2 ¼ ð
1
2 ; 0; 0Þ and results in

the monoclinic isotropy subgroup P21 with a cell doubling in

the a direction. On the other hand, g ¼ ða; a; a; aÞ describes a

distortion involving equal contributions from both k1 and k2

and results in an orthorhombic isotropy subgroup with C222

symmetry and a cell doubling in both the a and b directions.

For the 1988 version of the matrices, the interpretation of

the order parameter is generally not so simple. Consider the

distortion that takes us from the P4212 parent symmetry to the

monoclinic subgroup P21. The 180� screw rotation about b in

the setting of P21 is g ¼ x; yþ 1
2 ; z. In the setting of the parent

P4212, this operator is g ¼ xþ 1
2 ; yþ 1

2 ; z. Using the 2011

version of the matrices, the IR matrix for this operator is given

by

DðgÞ ¼

0 1 0 0

�1 0 0 0

0 0 �1 0

0 0 0 1

0
BB@

1
CCA: ð29Þ

Solving DðgÞg ¼ g for g, we obtain the order parameter

g ¼ ð0; 0; 0; aÞ, i.e.

0 1 0 0

�1 0 0 0

0 0 �1 0

0 0 0 1

0
BB@

1
CCA

0

0

0

a

0
BB@

1
CCA ¼

0

0

0

a

0
BB@

1
CCA: ð30Þ

In the 1988 version of the matrices, the IR matrix for this

operator is given by

DðgÞ ¼

0 0 �1 0

0 0 0 �1

�1 0 0 0

0 1 0 0

0
BB@

1
CCA: ð31Þ

Solving DðgÞg ¼ g for g, we now obtain g ¼ ða; 0; a; 0Þ as the

order parameter. Immediately, we can see a difference in the

form of the matrix and the order parameter. This matrix is not

block diagonal, even though k1R�1 ¼ k1 and k2R�1 ¼ �k2.

Thus, there is no easy way to tell from this order parameter

that the distortion involves only k2.

The unfortunate form used in the 1988 version was the

result of a broad emphasis on transforming isomorphic IRs to

have the same matrix images whenever possible. That strategy

proved to be inconvenient in ways that were not foreseen at

the time.

7. Dependence on setting

By definition, an IR is not intrinsically tied to a specific setting

of the SG or SSESG that it represents. Consider a transfor-

mation S that takes a symmetry group from ‘setting 1’ to

‘setting 2’. The operators in the two settings are related by

gð2Þ ¼ Sgð1ÞS�1. Since the groups fg
ð1Þ
i g and fg

ð2Þ
i g are iso-

morphic, they can be mapped onto the same IR matrices.

Therefore, if the IR matrices Dð1Þðgð1ÞÞ for operators in setting

1 are known, we can easily assign the IR matrices for opera-

tors in setting 2:

Dð2Þðgð2ÞÞ ¼ Dð1ÞðS�1gð2ÞSÞ: ð32Þ

We do this to ensure that the IR matrices are the same

regardless of setting, so that order parameters are identical in

different settings.

We constructed the 2011 version of IR matrices using the

SG settings of CDML. These matrices are stored in our
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database, which also contains the transformations that

take operators in the CDML settings to all of the settings

in International Tables for Crystallography, Vol. A (2002)

(denoted by IT). Implementing equation (32) to obtain IR

matrices for operators in the IT settings is straightforward.

In the ISO-IR tables, we display the IR matrices for

operators in the settings of IT. The transformations from

CDML settings to IT settings cause some issues relating to the

appearance of the entries in the tables.

7.1. IRs of SGs

Consider a simple example using SG No. 48 Pnnn. IT gives

this space group in two different settings: origin choices 1 and

2. To change the setting from origin choice 1 to origin choice 2,

we move the origin by s ¼ ð 1
4 ;

1
4 ;

1
4 Þ. (The transformation S in

terms of its action on x; y; z is given by S ¼ xþ 1
4, yþ 1

4 ; zþ 1
4.)

In origin choice 2, the glide reflection through the bc plane is

given by gð2Þ ¼ x; yþ 1
2 ; zþ 1

2. That same operator in origin

choice 1 is given by gð1Þ ¼ S�1gð2ÞS ¼ x� 1
2 ; yþ 1

2 ; zþ 1
2. Thus,

from equation (32), we obtain

Dð2Þðx; yþ 1
2 ; zþ 1

2 Þ ¼ Dð1Þðx� 1
2 ; yþ 1

2 ; zþ 1
2 Þ: ð33Þ

If the IR matrices are chosen so that they have the form of

equation (22) for setting 1, we obtain for setting 2

Dð2Þðx; yþ 1
2 ; zþ 1

2 Þ ¼ Tð 1
2 ;

1
2 ;

1
2 ÞP
ð1Þðx; y; zÞ; ð34Þ

which is clearly not the expected form of equation (22), where

the translation part would normally have been Tð0; 1
2 ;

1
2 Þ.

Entries in the ISO-IR tables reflect these departures from

the form of equation (22). For example, the CDML setting of

SG No. 48 uses origin choice 1, and we use origin choice 2 in

the tables. The A1 IR matrix for x; yþ 1
2 ; zþ 1

2 is listed in the

table as

Tð 1
2 ;

1
2 ;

1
2 Þ

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0
BB@

1
CCA: ð35Þ

As another example, consider SG No. 4 P21 which IT lists in

several different settings. Consider the two settings that use

(1) unique axis b and (2) unique axis c (both with cell choice

1). The transformation from setting 1 to 2 is simply a trans-

formation of axes, S ¼ z; x; y. The 180� screw rotation is given

by gð2Þ ¼ x; y; zþ 1
2 in setting 2 and gð1Þ ¼ S�1gð2ÞS ¼

x; yþ 1
2 ; z in setting 1. Thus, we obtain from equation (32),

Dð2Þðx; y; zþ 1
2 Þ ¼ Dð1Þðx; yþ 1

2 ; zÞ ¼ Tð1Þð0; 1
2 ; 0ÞPð1Þðx; y; zÞ:

ð36Þ

Now, Tð1Þðvð1ÞÞ contains dot products of v in setting 1 with k

vectors in setting 1, and Tð2Þðvð2ÞÞ contains dot products of v in

setting 2 with k vectors in setting 2. Since vector dot products

are the same in every setting, we find that Tð1Þðvð1ÞÞ ¼ Tð2Þðvð2ÞÞ

and

Dð2Þðx; y; zþ 1
2 Þ ¼ Tð2Þð0; 0; 1

2 ÞP
ð2Þðx; y; zÞ; ð37Þ

where Pð2Þðx; y; zÞ ¼ Pð1Þðx; y; zÞ, as desired. No special nota-

tion is required in the ISO-IR tables for IT settings that are

related to the CDML setting by a simple transformation of

axes.

7.2. IRs of SSESGs

For SSESGs, the situation is simpler than that of SGs. Let us

consider again the example of SG No. 48 Pnnn extended to

ð3þ 1Þ-dimensional superspace with the modulation vector

k ¼ ð�; 0; 1
2 Þ. In origin choice 2, the glide reflection followed

by an arbitrary phase shift � is given by gð2Þ ¼

x1; x2 þ
1
2 ; x3 þ

1
2 ; x3 � x4 þ �. The transformation that takes

origin choice 1 into origin choice 2 is given by S ¼

x1 þ
1
4 ; x2 þ

1
4 ; x3 þ

1
4 ; x4, and therefore the same glide reflec-

tion in origin choice 1 is given by gð2Þ ¼ S�1gð1ÞS ¼

x1 �
1
2 ; x2 þ

1
2 ; x3 þ

1
2 ; x3 � x4 þ

1
4þ �. Now we can write an

expression for the IR matrix using equation (32):

Dð2Þðgð2ÞÞ ¼ Dð1ÞðS�1gð2ÞSÞ ¼ Qð 1
4þ �ÞP

ð1Þ
s ðx1; x2; x3; x4Þ: ð38Þ

Since Qð 1
4þ �Þ ¼ Qð 1

4 ÞQð�Þ, we can obtain the prescribed

form in equation (16),

Dð2Þðgð2ÞÞ ¼ Qð�ÞPð2Þs ðx1; x2; x3; x4Þ; ð39Þ

where

Pð2Þs ðx1; x2; x3; x4Þ ¼ Qð 1
4 ÞP
ð1Þ
s ðx1; x2; x3; x4Þ: ð40Þ

In the example of SG No. 48, the A1 IR matrix for

x; yþ 1
2 ; zþ 1

2 is listed in the ISO-IR tables as

Qð�Þ

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

0
BB@

1
CCA: ð41Þ

Note that the matrices Pð2Þs in the above equation and

Pð1Þs ¼ Pð1Þ in equation (35) are related by the expression in

equation (40).

8. Conclusions

The 2011 version of our IR matrices include some important

improvements.

(i) For three-dimensional SGs, IR matrices are separated

into a translation part T and a point-operation part P. The T

matrix has a simple prescribed form that depends on the free

parameters in k, while the P matrix does not depend on the

free parameters in k. The separation of IR matrices into T and

P makes the tabulation of these matrices possible for non-

special k vectors.

(ii) For ð3þ dÞ-dimensional SSESGs, IR matrices are

separated into a phase-shift part Q and a point-operation part

Ps. The Q matrix has a simple prescribed form, and neither the

Q nor Ps matrices depend on the free parameters in k. The

separation of IR matrices into Q and Ps makes the tabulation

of these matrices possible.

(iii) The IR matrices are brought to a block form which

allows one to see by inspection which parts of the matrices and
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the associated order parameters belong to which k vector in

the star of �k.

In the ISODISTORT software package, we now allow users

to choose which version of the IR matrices they use. The 2011

version is expected to become the default within the

ISOTROPY suite in the future. But because many published

papers are based on the 1988 version, we plan to continue to

support it. Some features in ISODISTORT already require

the 2011 version, and many new features implemented in the

future will require the 2011 version as well. We strongly

encourage those who work with either version to explicitly

state which version they use in published work.

APPENDIX A
Superspace groups

If any of the components of a non-special k point are irra-

tional, then the resulting distortion will be incommensurate

with the lattice. These types of distortions are best described

by extending G to ð3þ dÞ-dimensional superspace, resulting in

isotropy subgroups with SSG symmetry. The additional d

dimensions in superspace are phase shifts �i of the modula-

tions along the directions of each of the d k vectors, respec-

tively, in the star of �k.

The coordinates in three-dimensional space are called

‘external coordinates’, while the phase shifts �i are called

‘internal coordinates’. The SSG point operators are denoted

by ðR; "Þ, where R operates on the external coordinates and "
operates on the internal coordinates. The point operator is

represented by a block-diagonal matrix,

ðR; "Þ ¼
R 0

0 "

� �
: ð42Þ

We call this the unmixed setting because its operators never

mix external and internal coordinates.

The lattice of the SSG is defined by the following basis

vectors, each given in terms of coordinates in the unmixed

setting:

a1 ¼ ð1; 0; 0;�k1 � a;�k2 � a; . . . ;�kd � aÞ;

a2 ¼ ð0; 1; 0;�k1 � b;�k2 � b; . . . ;�kd � bÞ;

a3 ¼ ð0; 0; 1;�k1 � c;�k2 � c; . . . ;�kd � cÞ;

a4 ¼ ð0; 0; 0; 1; 0; . . . ; 0Þ;

a5 ¼ ð0; 0; 0; 0; 1; . . . ; 0Þ;

. . .

a3þd ¼ ð0; 0; 0; 0; 0; . . . ; 1Þ: ð43Þ

These lattice vectors define another setting that we refer to as

the SSG-lattice setting. In the SSG-lattice setting, a point

operator, denoted by Rs, is no longer represented by a block-

diagonal matrix:

Rs ¼
R 0

M "

� �
: ð44Þ

The off-diagonal portion M is a d	 3 matrix defined by

Mmj ¼
P3

i¼1

kmiRij �
Pd
n¼1

"mnknj; ð45Þ

where kmi is the ith component of the mth k vector in the star

of �k. The same ð3þ dÞ-dimensional vector will have

different coordinate components depending on which setting

is used (unmixed coordinates or SSG-lattice coordinates). But

in either case, the first three and the last d components are

loosely referred to as the ‘external’ and ‘internal’ coordinates,

respectively. We see that operators in the SSG-lattice setting

can mix external coordinates onto internal coordinates, but

not the other way around.

Consider a vector vs expressed in the SSG-lattice setting:

vs ¼ v1a1 þ v2a2 þ v3a3 þ �1a4 þ �2a5 þ � � � þ �da3þd: ð46Þ

Substituting equations (43) into this expression, we obtain vs

expressed in the unmixed setting:

vs ¼ ðv1; v2; v3; �1 � k1 � v; �2 � k2 � v; . . . ; �d � kd � vÞ: ð47Þ

Extracting the phase shifts �i from the above expression, we

obtain

�i ¼ �i � ki � v; ð48Þ

where �i are the internal coordinates in the unmixed setting

and �i are the internal coordinates in the SSG-lattice setting.

APPENDIX B
IR and PIR matrices in real form

We obtain the real form of IR and PIR matrices such that all

translation matrices in SGs and all phase-shift matrices in

SSESGs have a standard form: d matrix blocks along the

diagonal with the ith block equal to Ubðki � vÞ for SGs and

UbðdiÞ for SSESGs. Here, the matrix UbðxiÞ of dimension

b ¼ enkt is given by equation (24), where t ¼ 1 for type-1 IRs

and t ¼ 2 for PIRs of type-2 and type-3 IRs.

B1. Type-2 and 3 PIRs

We form a PIR from the direct sum of the IR and its

complex conjugate, as in equation (23), resulting in matrices of

dimension n ¼ 2denk. Then we apply three consecutive simi-

larity transformations.

(i) A permutation transformation S1 composed of ðenkÞ-

dimensional matrix blocks,

S1IJ ¼

( 1enk
; if I is odd and J ¼ 1

2 ðI þ 1Þ;
1enk

; if I is even and J ¼ dþ 1
2 I;

0enk
; otherwise;

ð49Þ

where I and J are hybrid indices that combine i with i0 and j

with j0, and therefore run from 1 to 2d.

(ii) A transformation S2 with identical (2enk)-dimensional

matrix blocks on the diagonal,

S2ii ¼
1ffiffiffi
2
p

1enk
1enk

i1enk
�i1enk

� �
: ð50Þ

(iii) If e ¼ 2, another permutation transformation S3 with

identical ð2enkÞ-dimensional matrix blocks on the diagonal,
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S3ii ¼

1nk
0nk

0nk
0nk

0nk
0nk

0nk
1nk

0nk
0nk

1nk
0nk

0nk
1nk

0nk
0nk

0
BB@

1
CCA: ð51Þ

We obtain the real form of the PIR matrix using

DPIRðgÞ ¼ S3S2S1

"
DIRðgÞ 0

0 DIRðgÞ
�

#
S�1

1 S�1
2 S�1

3 : ð52Þ

We can also obtain the block-diagonal complex form from the

real form using the inverse transformation. Some applications

require this transformation (for example, the algorithm for

projecting distortion mode vectors; Stokes et al., 1991). ISO-IR

contains tables of DPIRðgÞ as well as tables of DIRðgÞ.

B2. Type-1 IRs

We begin by bringing IR matrices for pure translations f1jvg

in SGs and pure phase shifts f1; 1j0; dg in SSESGs to the

standard real form.

If e ¼ 1, these matrices are already in standard real form.

This happens because, for type-1 IRs, the condition e ¼ 1 only

occurs if the k vector is special and if k ¼ �k (mod K),

resulting in ki � v ¼
1
2 (mod 1) and

Diiðf1jvgÞ ¼ 1nk
cosð2�ki � vÞ: ð53Þ

If e ¼ 2, we simply apply the transformation S2 with identical

ðenkÞ-dimensional matrix blocks on the diagonal,

S2ii ¼
1ffiffiffi
2
p

1enk
1enk

i1enk
�i1enk

� �
: ð54Þ

This transformation often brings the remaining IR matrices to

real form as well. If not, then we need to find a transformation

S4 to complete the task:

DPIRðgÞ ¼ S4S2DIRðgÞS
�1
2 S�1

4 : ð55Þ

The task of finding S4 is not straightforward, but we can make

one simplification: S4 can be chosen to be block diagonal with

identical ðenkÞ-dimensional matrix blocks on the diagonal. We

also require that S4 does not change the matrices for trans-

lations in SGs or for phase shifts in SSESGs, which, at this

point, are already in the desired standard form. The S4

transformations used here were determined on a case-by-case

basis, a process that required a significant effort and involved a

rather long history.

Once the IR matrices have been obtained in real form, S�1
2

can be used to transform them back to a complex form,

D0IRðgÞ ¼ S�1
2 DPIRðgÞS2; ð56Þ

although generally only the matrices for translations in SGs

and phase shifts in SSESGs will be the same as those we began

with since we omitted S4 from the inverse transformation.

ISO-IR contains tables of the real form DPIRðgÞ as well as

tables of the complex form D0IRðgÞ that are obtained by the

transformation in equation (56).

We would like to acknowledge helpful conversations with

Mois Aroyo, Manuel Perez-Mato and Brooks Harris.
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